

DE RADIOPROTECTION

ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

ETSON

EUROPEAN TECHNICAL SAFETY ORGANISATIONS NETWORK

Analysis of the RCF experiments dedicated to spatial correlations measurements

E. Dumonteil

On behalf of the IRSN-LANL collaboration

Contact: eric.dumonteil@irsn.fr

IRSN PSN-EXP/SNC France

Collaboration

■ IRSN PSN-EXP/SNC/LN :

N. Thompson, W. Monange, B. Dechenaux, E. Dumonteil

■ LANL NEN-2 group:

- J. Hutchinson, R. Bahran, G. McKenzie, M. Nelson, A. McSpaden
- RCF staff @ RPI led by P. Caracappa
- Experiments at RPI performed in mid-2017
- Analysis: N. Thompson (1 year postdoc at LANL+1 year postdoc at IRSN)

Clustering & Spatial correlations

L = 100 cm

$$L = 400 \text{ cm}$$

$$\frac{\partial}{\partial t}g_t(r) = 2D\nabla_r^2g_t(r) + \frac{\lambda \nu_2}{c_t}\delta(r)$$

Annals of Nuclear Energy 63 (2014) 612-618

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Particle clustering in Monte Carlo criticality simulations

Eric Dumonteil*, Fausto Malvagi, Andrea Zoia, Alain Mazzolo, Davide Artusio, Cyril Dieudonné, Clélia De Mulatier

CEA/Saclay, DEN/DM2S/SERMA/LTSD, 91191 Gif-sur-Yvette Cedex, France

Motivations to study spatial correlations

- Spatial correlations generalize the notion of stochastic noise
- Monte Carlo criticality codes :
 - "artificial" sampling of the fission pdf width (2 or 3 neutrons)
 - "artificial" spatial correlations and stochastic noise
 - prevent to correctly estimate error bars when simulating large systems
 - => generalized central limit theorems could be used is correlations/noise could be properly characterized
- Correlated physics Monte Carlo codes :
 - use for homeland security applications, noise-based detectors (ex: fuel reloading), systems with low sources levels (ex: start-up of reactors), ...
 - these codes use specific nuclear data: nubar => mean number of pairs
 - qualification of these codes needs specific benchmarks/experiments
- Research reactors / industry / etc.
 - Understanding fundamental principles of stochastic fluctuations at the startup of sub-critical / critical experiments
 - Feynman & Rossi curves behavior vs reactivity, dominance ratio, etc. ?

Measurements to characterize clustering / spatial correlations ?

□ Should be measurable, if certain conditions are gathered:

$$rac{ au_D}{ au_E} \simeq \left(rac{L^2}{D}
ight)/\left(rac{N}{\lambda}
ight) = rac{1}{N}rac{L^2}{\ell_m^2}$$
 $\ell_m^2 = rac{D}{\lambda}$ Neutron migration area

- Ideal conditions for an experiment that could characterize clustering?
 - Zero power reactor
 - ☐ Fresh fuel, no burn-up effects
 - ☐ As big as possible

RCF@RPI

☐ Find a way to do spatial measurements

NOMAD detectors & He3 tubes

RPI RCF

- "Zero power" reactor (maximum operating power = 15 W)
 - Fuel is essentially "fresh", not activated
 - Makes it very easy to set up and perform experiments
- UO₂ ceramic fuel, 4.81 wt. % ²³⁵U, 335 fuel pins for measurements
 - Fuel is 36 inches active length
- Water moderated
- Four boron control rods surrounding the core

Measurements at RPI

- Were able to complete 3 full days of experiments
- Experiments used two NOMAD detectors
- Also used ³He tubes in the core

Measurements at RPI

Measurements at RPI

- Made over a dozen critical measurements at different reactor powers, from less than 1 mW to 0.85 W
 - 0.93 mW, 1 mW, 1.4 mW, 1.7 mW, 4.1 mW, 4.6 mW, 7.0 mW, 43 mW, 85 mW,
 90 mW, 90 mW, 0.47 W, 0.85 W
 - Measurement times varied from 30 seconds to 2 hours long
- During the measurements, we did not adjust control rod positions
 - Because of this, some measurements were slightly above or below critical
- Measurements with the in core ³He detectors, NOMAD detectors, and RCF detectors (uncompensated ion chambers)
 - In core ³He detectors tended to saturate at fairly low power levels
 - => 3He detectors were used to calculate correlations vs distance in the core
 - => NOMAD detectors were used in the analysis to calculate spatial correlations
 vs power outside the core

Simulations of the RCF Measurements

- Simulations of the experiment showed it might be possible to measure clustering / spatial correlations at the RCF
- Experiments were designed with two NOMAD detectors

Design of the experiment using MORET 5

- **MORET 5 code with all Random Noise options activated:**
 - Data library: Endfb71
 - ☐ Fission sampling:
 - ✓ Freya
 - ✓ discrete Zucker and Holden tabulated

 - ✓ Only Spontaneous fissions
- Simulations run on the CCRT supercomputer:
 - \square Simulated signal = 1000 s (prompt+delayed)
 - Number of independent simulations = 330
 - \square Number of neutrons per simulation = 2.4 10⁴

Excellent reactivity: Rho = -4 pcm

Up to 10 mW of simulated power!

Final rho

Analysis of the experiment using MORET 5

- Goal was to simulate the actual number of events in the core
- To make the simulations as accurate as possible, a first set of simulations was done, and fission sites were tallied
 - These fission sites were used as the starting neutron positions for the next set of simualtions
 - Instead of simulating fission neutrons as the starting particles, delayed neutrons with the accurate proportion of delayed neutron groups were used as starting particles
- Over three months of simulations, using >32 cores
- Almost 8 TB of data (gzipped!)
- 2500 simulations, each with 1000 starting neutrons
 - Most simulations died immediately, some multiplied and continued
 - Simulations were for 2000 seconds live time

Systematic Uncertainty in Power

- Since the RCF is "zero" power (produces no heat from fission), reactor power is inferred indirectly
- Normal procedure for calculating power:
 - Bring the reactor critical with gold foils attached to a fuel pin
 - Irradiate gold foils, measure the radioactivity after irradiation
 - Counts are compared to an MCNP simulation of the reactor
- Many small sources of error:
 - Detector calibration, ROI on data acquisition software, error on the number of counts
- Added complication RCF detectors are not accurate at extremely low powers (under 5 mW) and also detect gamma background.
- Currently working on a estimate of power solely based on the NOMAD detector responses to reduce uncertainty in power.

Systematic Uncertainty in Position

- Should be constant and ~1 cm
- An alignment procedure could be employed to correct the positions once for all the runs?
 - ☐ He3 tube: 4 inches & 30 atm
 - ☐ 4 He3 tubes fit in the pin-cell!

Simulated data results for power spatial distribution

- Time-integrated power for the 1.8 mW run
- 3D view and 2D cuts
- Distributions are converged

Simulated radial spatial power distribution

Time-integrated

Selected time bin (width: 1 ms)

- Radial power view for the 1.8 mW run
- The different time bins exhibit a spatial Poissonian statistics
- Coherent with the $\frac{L^2}{L^2}$ theoretical prediction

Simulated axial spatial power distribution

- Axial power view for the 1.8 mW run
- The different time bins exhibit spatially correlated patterns
- Coherent with the $rac{L^2}{\ell_m^2}$ theoretical prediction

Comparison between simulated & experimental data

Theoretical prediction:

$$g_t(r) = \frac{\lambda \nu_2}{8Dc_0 \pi^{3/2} r} \Gamma\left(\frac{1}{2}, \frac{r^2}{8Dt}\right)$$

Annals of Nuclear Energy 63 (2014) 612-618

- Experimental data: 1.8 mW run + NOMAD
- Theoretical, simulated and experimental data for g vs P are in perfect accordance

Comparison between simulated & experimental data

Theoretical prediction:

$$g_t(r) = \frac{\lambda \nu_2}{8Dc_0 \pi^{3/2} r} \Gamma\left(\frac{1}{2}, \frac{r^2}{8Dt}\right)$$

Annals of Nuclear Energy 63 (2014) 612-618

- Experimental data: 1.8 mW run + 3He
- Theoretical, simulated and experimental data for g vs distance are in good qualitative accordance
- Only 3 points but linear fit strangely good

Critical catastrophe: what did we expect?

- Stochastic modelling of the neutron population for the following events
 - <u>Capture</u>, inducing transitions $n \rightarrow n-1$ with rate λ_C
 - **Fission**, inducing transitions $\mathbf{n} -> \mathbf{n} \mathbf{1} + \mathbf{v}$ with rate λ_F
- We should observe increasing fluctuations

$$\langle n \rangle = n(0)$$

$$Var(n,t) = C \cdot n(0) t$$

Critical catastrophe: what did we observe?

- $Arr 2 long runs with similar behavior : analysis of the 5 mW run (2h / 500MB / <math>10^7$ cts)
- Observation #1 : re-ajustment of the neutron power level
- Observation #2 : fluctuations are not diverging linearly but stayed bounded

Critical catastrophe: what did we conclude?

- Stochastic modelling of the neutron population for the following events
 - <u>Capture</u>, inducing transitions n -> n-1 with rate λ_C
 - **Fission**, inducing transitions $\mathbf{n} -> \mathbf{n} \mathbf{1} + \mathbf{v}$ with rate λ_{F}
 - Spontaneous fission, inducing transitions $n \rightarrow n + v_{sf}$ with rate?

Stochastic modeling of the effect of intrinsec sources

Forward equation for probability of having n neutrons at time t

$$\frac{\partial P(n,t)}{\partial t} = -\lambda_C n P(n,t) + \lambda_C (n+1) P(n+1,t) + \lambda_F \sum_{\nu} p_{\nu} (n+1-\nu) P(n+1-\nu,t) - \lambda_F \sum_{\nu} p_{\nu} n P(n,t) + \lambda_{SF} \sum_{\nu_{SF}} p_{\nu_{SF}} P(n-\nu_{SF},t) - \lambda_{SF} \sum_{\nu_{SF}} p_{\nu_{SF}} P(n,t)$$

From which we can derive the equations for **mean** and **variance**

$$\frac{\partial}{\partial t}\langle n \rangle = \underbrace{\left[\lambda_F \left(ar{
u} - 1 \right) \, - \, \lambda_C \right]}_{
ho}\langle n \rangle \, + \, \lambda_{SF} ar{
u}_{SF}$$

$$\frac{\partial}{\partial t} \text{Var}(n,t) \, = \, 2\rho \text{Var}(n,t) \, + \, \left[\lambda_F \, \overline{\nu(\nu-1)} \right] \langle n \rangle + \lambda_{SF} \left[\overline{\nu_{SF}(\nu_{SF}-1)} \, + \, \bar{\nu}_{SF} \right]$$

Mean and variance

We obtain $\langle n \rangle = n(0) \, e^{\rho \, t} + \frac{\lambda_{SF} \, \bar{\nu}_{SF}}{\rho} \, \left(e^{\rho t} - 1 \right)$ Control Rods were not moved from here on Power stable for 15 minutes

To maintain a constant neutron population at late times we must have $\rho < 0$

$$Var(n,t) = Ce^{2\rho t} + \left(\frac{\rho - a_F}{\rho}\right) \langle n \rangle + \frac{\lambda_{SF} \bar{\nu}_{SF}}{2\rho} \left(\frac{\rho - a_F}{\rho}\right) - \frac{b_{SF}}{2\rho}$$

$$rac{\mathrm{Var}(n_{\infty},\infty)}{n_{\infty}} = 1 + rac{\lambda_F}{2\left|\lambda_F(ar{
u}-1)-\lambda_C
ight|} + rac{\overline{
u_{SF}(
u_{SF}-1)}}{2\,ar{
u}_{SF}} \hspace{1cm} ext{is ker}$$

is kept constant

with:

Conclusions

- Spatial correlations & clustering in theory/simulations/measurements match very well
- Theoretical framework to understand the absence of critical catastrophe
 => due to intrinsic sources
- This work should help understanding noise, fluctuations and correlations of systems with small power
- Might help to qualify correlated physics codes

Remaining work

- Difficulties arising whenever simulating configurations with raising power
- Check of the ergodic assumption to calculate statistical error bars
- Re-run simulations on a supercomputer to reach 10 mW
- Systematic error bars on power & positions
- Design of an experiment to measure the same quantities for different dominance ratio, and with different reactivities

Questions?

